A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism

نویسندگان

  • Qian Lei
  • Meijia Zhang
  • Liguo Shen
  • Renjie Li
  • Bao-Qiang Liao
  • Hongjun Lin
چکیده

This study linked the chemical potential change to high specific filtration resistance (SFR) of gel layer, and then proposed a novel membrane fouling mechanism regarding gel layer filtration, namely, Flory-Huggins based filtration mechanism. A mathematical model for this mechanism was theoretically deduced. Agar was used as a model polymer for gel formation. Simulation of the mathematical model for agar gel showed that volume fraction of polymer and Flory-Huggins interaction parameter were the two key factors governing the gel SFR, whereas, pH and ionic strength were not related with the gel SFR. Filtration tests of gel layer showed that the total SFR value, effects of pH and ionic strength on the gel SFR well agreed with the perditions of model's simulation, indicating the real occurrence of this mechanism and the feasibility of the proposed model. This mechanism can satisfactorily explain the extremely high SFR of gel layer, and improve fundamental insights into membrane fouling regarding gel layer filtration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fouling mechanisms during protein microfiltration: The effects of protein structure and filtration pressure on polypropylene microporous membrane performance

A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each pro...

متن کامل

A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the mode...

متن کامل

Fouling Mechanism Study of Nanoporous Membrane by Ultrafitration of Whey Proteins

One of the barriers during whey filtration using UF membrane is the fouling phenomenon of the membrane, which is caused by whey proteins. In this work, the UF membranes were prepared using polysufone (PSf), dimethyl formamide (DMF), 1 wt.% poly vinyl pyrrolidone (PVP) and different concentrations of LiCl via phase inversion induced by immersion precipitation. The prepared membranes were charact...

متن کامل

Osmotic pressure effect on membrane fouling in a submerged anaerobic membrane bioreactor and its experimental verification.

A laboratory-scale submerged anaerobic membrane bioreactor (SAnMBR) treating sewage was used to investigate the membrane fouling mechanism. Characterization of cake layer formed on membrane surface showed that cake layer was hydrated, rich of extracellular polymeric substances (EPS) and negative charged with the charge density of 0.21-0.46 meq/kg MLSS. Detailed analysis revealed a new membrane ...

متن کامل

Combined Three Mechanisms Models for Membrane Fouling during Microfiltration

Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the success...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016